Sagot :
Answer:
The slope of the line is [tex]-\frac{1}{5}[/tex].
Step-by-step explanation:
Given: [tex]P1(3,1)[/tex], [tex]P2(-2,2)[/tex]
Find: [tex]m=?[/tex]
Formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Solution:
[tex]m=\frac{y_2-y_1}{x_2-x_1}\\m=\frac{2-1}{-2-3}\\\boxed{m=-\frac{1}{5}}[/tex]
#CarryOnLearning
Answer:
[tex]$ \mbox{\Large$ \textnormal{The slope of the line} \ P_1P_2 \ \textnormal{is} \ -\frac{1}{5}.$ } $\\[/tex].
Step-by-step explanation:
1.) To find the slope, we will use the formula: [tex]$ \mbox{\Large$ m =\frac{y_2 - y_1}{x_2 - x_1}$ } $[/tex], where [tex]m[/tex] is the slope and [tex]x_1, x_2, y_1, y_2[/tex] are coordinates.
2.) In this problem, we have [tex]P_1 = (3, 1)[/tex] and [tex]P_2 = (-2, 2)[/tex]. Let [tex](x_1, x_2) = (3, 1)[/tex] and [tex](y_1, y_2) = (-2, 2)[/tex].
⇒ [tex]$ \mbox{\Large$ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(2) - (1)}{(-2) - (3)} = \frac{2 - 1}{(-2) + (-3)} = \frac{1}{-5} = \bold{-\frac{1}{5}}$ } $[/tex]
I hope this helps you understand this concept in Mathematics.
Stay safe po.
#CarryOnLearning
#AnswerForTrees