Find the slope of P, (3, 1) and P2
(-2,2)​


Sagot :

Answer:

The slope of the line is  [tex]-\frac{1}{5}[/tex].

Step-by-step explanation:

Given:   [tex]P1(3,1)[/tex],   [tex]P2(-2,2)[/tex]

Find:   [tex]m=?[/tex]

Formula:   [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Solution:

[tex]m=\frac{y_2-y_1}{x_2-x_1}\\m=\frac{2-1}{-2-3}\\\boxed{m=-\frac{1}{5}}[/tex]

#CarryOnLearning

Answer:

[tex]$ \mbox{\Large$ \textnormal{The slope of the line} \ P_1P_2 \ \textnormal{is} \ -\frac{1}{5}.$ } $\\[/tex].

Step-by-step explanation:

1.) To find the slope, we will use the formula: [tex]$ \mbox{\Large$ m =\frac{y_2 - y_1}{x_2 - x_1}$ } $[/tex], where [tex]m[/tex] is the slope and [tex]x_1, x_2, y_1, y_2[/tex] are coordinates.

2.) In this problem, we have [tex]P_1 = (3, 1)[/tex] and [tex]P_2 = (-2, 2)[/tex]. Let [tex](x_1, x_2) = (3, 1)[/tex] and [tex](y_1, y_2) = (-2, 2)[/tex].

⇒ [tex]$ \mbox{\Large$ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(2) - (1)}{(-2) - (3)} = \frac{2 - 1}{(-2) + (-3)} = \frac{1}{-5} = \bold{-\frac{1}{5}}$ } $[/tex]

I hope this helps you understand this concept in Mathematics.

Stay safe po.

#CarryOnLearning

#AnswerForTrees