Direcrions: epress the following decimals in fraction from.

[tex]6. \: 0.27 = [/tex]
[tex]7. \: 1.125 = [/tex]

[tex]8. \: 0.2525...[/tex]
[tex]9. \: 3.7...[/tex]
10 . 12.125=
11.-3.6
12.-24.7...


Sagot :

Answer:

6.27/100

7.1 1/8

8.101/400

9.3 7/10

10.12 1/8

11.-3 3/5

12.-24 7/10

Step-by-step explanation:

#Hopeithelps

Express the following in fraction form.

6. [tex]0.27[/tex]

[Sol]      [tex]0.27 = \boxed{\frac{27}{100}}[/tex]

7. [tex]1.125[/tex]

[Sol]     Set aside the whole number 1. Change [tex]0.125[/tex] into a fraction.

[tex]0.125=\frac{125}{1000}\\=\frac{125}{1000}\div \frac{25}{25}\\=\frac{5}{40}\\=\frac{1}{8}[/tex]

Bring back 1.

[tex]1.125=\boxed{1 \frac{1}{8}}[/tex]

8. [tex]0.2525...[/tex]

[Sol]     Let [tex]x[/tex] be [tex]0.2525[/tex]. The repeating digit is [tex]25[/tex]. Move the decimal point two places to the right.

[tex]25.2525[/tex]

Then,

[tex]100x=25.2525\\100x-x=25.2525-0.2525\\99x=25\\x=\frac{25}{99}[/tex]

Therefore, [tex]0.2525=\boxed{\frac{25}{99}}[/tex].

9. [tex]3.7...[/tex]

[Sol]     Set aside [tex]3[/tex]. Change [tex]0.7...[/tex] into a fraction. Let [tex]x[/tex] be [tex]0.7777[/tex]. The repeating digit is [tex]7[/tex]. Move the decimal point one place to the right.

[tex]7.7777[/tex]

Then,

[tex]10x=7.7777\\10x-x=7.7777-0.7777\\9x=7\\x=\frac{7}{9}[/tex]

Bring back [tex]3[/tex].

[tex]3.7... = \boxed{3 \frac{7}{9}}[/tex]

10. [tex]12.125[/tex]

[Sol]     Set aside [tex]12[/tex]. Change [tex]0.125[/tex] into a fraction.

[tex]0.125=\frac{125}{1000}\\=\frac{125}{1000}\div \frac{25}{25}\\=\frac{5}{40}\\=\frac{1}{8}[/tex]

Bring back [tex]12[/tex].

[tex]12.125=\boxed{12 \frac{1}{8}}[/tex]

11. [tex]-3.6[/tex]

[Sol]     Set aside [tex]-3[/tex]. Change [tex]0.6[/tex] into a fraction.

[tex]0.6=\frac{6}{10}\\=\frac{6}{10}\div \frac{2}{2}\\=\frac{3}{5}[/tex]

Bring back [tex]-3[/tex].

[tex]-3.6=\boxed{-3\frac{3}{5}}[/tex]

12. [tex]-24.7...[/tex]

[Sol]     Set aside [tex]-24[/tex]. Change [tex]0.7...[/tex] into a fraction. Let [tex]x[/tex] be [tex]0.7777[/tex]. The repeating digit is [tex]7[/tex]. Move the decimal point one place to the right.

[tex]7.7777[/tex]

Then,

[tex]10x=7.7777\\10x-x=7.7777-0.7777\\9x=7\\x=\frac{7}{9}[/tex]

Bring back [tex]-24[/tex].

[tex]-24.7...=\boxed{-24\frac{7}{9}}[/tex]

Happy learning!

#CarryOnLearning