Mary dropped off two packages at the post office. One package weighed 2.24 kilograms, and the other package weighed 810 grams. What is the combined weight of both packages in grams?

Sagot :

[tex]\blue{\huge {\mathrm{ CONVERSION }}}[/tex]

[tex]\blue{\huge {\mathrm{ OF \; UNITS }}}[/tex]

[tex]======================[/tex]

[tex]{\underline{\huge \mathbb{P} {\large \mathrm {ROBLEM : }}}}[/tex]

[tex] \bold{–:} [/tex] Mary dropped off two packages at the post office. One package weighed 2.24 kilograms, and the other package weighed 810 grams. What is the combined weight of both packages in grams?

  • [tex]{\underline{\Large {\mathbb{A \normalsize{\mathrm {NSWER : }} {\tt{\green{\; \; 3,050 \; grams\; \; }}}} }}}[/tex]

————————————————-—

[tex]{\underline{\huge \mathbb{S} {\large \mathrm {OLUTION : }}}}[/tex]

[tex]\: :\; =\blacktriangleright[/tex] To find the answer, first, we need to convert the weight unit of the first package from kilograms to grams. To convert kilograms to grams, just multiply the given value by 1000.

Let the N will be the unknown value:

  • N = 1000 × 2.24 kilograms

  • N = 2,240 grams

[tex]\: : \; =\blacktriangleright[/tex] Now that we already converted the weight unit of the first package, we can now add the weight of the first package to the weight of the second package to find the total value of their weight in grams.

  • N = 2,240 grams + 810 grams

  • N = 3,050 grams

FULL SOLUTION:

  • [tex] \sf {N = (1000 \times 2.24 \; kilograms) + 810 \; grams} [/tex]

  • [tex] \sf {N = \green{2,240 \; grams} + 810 \; grams} [/tex]

  • [tex] \sf {N = {\underline{\boxed{\green{ \sf{3,050 \; grams}}}}}} [/tex]

∴ The total weight of the two packages in grams is 3,050 grams.

[tex]======================[/tex]