Sagot :
✏️LAW OF SINES
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
[tex] \underline{\mathbb{ANSWER:}} [/tex]
[tex] \qquad\Large\rm» \:\: \green{b \approx 39.89} [/tex]
[tex] \qquad\Large\rm» \:\: \green{\angle A \approx 25.32\degree} [/tex]
[tex] \qquad\Large\rm» \:\: \green{\angle B \approx 26.68\degree} [/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
[tex] \underline{\mathbb{SOLUTION:}} [/tex]
» The given oblique triangle gives two sides and one given angle (SSA). Solve for the third side then the following angles using the law of sines.
Find ∠A:
- [tex]\rm \frac{\sin A}{a} = \frac{\sin C}{c} \\[/tex]
- [tex]\rm \frac{\sin A}{38} = \frac{\sin 128 \degree}{70} \\[/tex]
- [tex]\rm 70(\sin A) \approx 29.94[/tex]
- [tex]\rm \frac{70(\sin A)}{70} \approx \frac{29.94}{70} \\ [/tex]
- [tex]\rm\sin A \approx \frac{29.94}{70} \\ [/tex]
- [tex]\rm\angle A \approx \sin^{ \text - 1} \bigg( \frac{29.94}{70} \bigg) \\ [/tex]
- [tex]\rm\angle A \approx 25.32 \degree[/tex]
[tex] \rm [/tex]
Find ∠B:
- [tex]\rm \angle A + \angle B +\angle C = 180 \degree [/tex]
- [tex]\rm 25.32 \degree + \angle B + 128 \degree \approx 180 \degree [/tex]
- [tex]\rm\angle B + 153.32 \degree \approx 180 \degree [/tex]
- [tex]\rm\angle B \approx 180 \degree - 153.32 \degree[/tex]
- [tex]\rm\angle B \approx 26.68 \degree[/tex]
[tex] \rm [/tex]
Find side c:
- [tex]\rm \frac{\sin B}{b} = \frac{\sin C}{c} \\[/tex]
- [tex]\rm \frac{\sin 26.68 \degree}{b} \approx \frac{\sin 128 \degree}{70} \\[/tex]
- [tex]\rm 31.43 \approx b(\sin 128 \degree)[/tex]
- [tex]\rm \frac{31.43}{\sin 128 \degree} \approx \frac{b( \sin 128 \degree)}{ \sin 128 \degree} \\ [/tex]
- [tex]\rm 39.89 \approx b[/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#CarryOnLearning