Identify the radius and the center of the circle that is defined by the following equations. Sk the figure on a cartesian plane. Use a compass to draw the figure. 1. x² + y² = 49 4. x² + y² = 100 2. (x - 5)² + (y-6)² = 81 5. x² + y² - 6x + 4y + 9 = 0 3. x² + y² + 6x - 4y - 3 = 0​

Sagot :

Answer :

1. x² + y² = 49

– (x - 0)² + (y - 0)² = 7²

– r = 7 , center = (0,0)

2. (x - 5)² + (y - 6)² = 81

– (x - 5)² + (y - 6)² = 9²

– r = 9 , center = (5,6)

3. x² + y² + 6x - 4y - 3 = 0

– x² + y² + 6x - 4y = 3

– x² + 6x + y² - 4y = 3

– x² + 6x + ? + y² - 4y = 3 + ?

– x² + 6x + 9 + y² - 4y = 3 + 9

– (x + 3)² + y² - 4y = 12

– (x + 3)² + y² - 4y + ? = 12 + ?

– (x + 3)² + y² - 4y + 4 = 12 + 4

– (x + 3)² + (y - 2)² = 16

– r = 4 , center = (-3,2)

4. x² + y² = 100

– (x - 0)² + (y - 0)² = 10²

– r = 10 , center = (0,0)

5. x² + y² - 6x + 4y + 9 = 0

– x² + y² - 6x + 4y = -9

– x² + 6x + y² + 4y = -9

– x² + 6x + ? + y² + 4y = -9 + ?

– x² + 6x + 9 + y² + 4y = -9 + 9

– (x - 3)² + y² + 4y = 0

– (x - 3)² + y² + 4y + ? = 0 + ?

– (x - 3)² + y² + 4y + 4 = 0 + 4

– (x - 3)² + (y + 2)² = 4

– r = 2 , center = (3,-2)

(ノ^_^)ノ

View image Luna156
View image Luna156