In radicals,what is the square root of 3 multiplied by the cube root of 18?

Sagot :

Step 1:  Convert the radicals to to fractional exponent:

[tex] \sqrt{3} = 3 ^{ \frac{1}{2} } [/tex]

[tex] \sqrt[3]{18} [/tex] = [tex] 18^{ \frac{1}{3} } [/tex]

Step 2:  Convert the fractional exponents to similar fractions:

LCD of 1/2 and 1/3 is 6

1/2 = 3/6   ⇒ [tex]3 \frac{1}{2} [/tex] = [tex]3 ^{ \frac{3}{6} } [/tex]

1/3 = 2/6   ⇒ [tex]18 ^{ \frac{1}{3} } [/tex]  = [tex]18 ^{ \frac{2}{6} } [/tex]

Step 3:  Convert to radicals:

[tex] 3^{ \frac{3}{6} } = \sqrt[6]{3 ^{3} } [/tex]

[tex]18 ^{ \frac{2}{6} } = \sqrt[6]{18 ^{2} } [/tex]

Step 4:  Multiply:

[tex]( \sqrt[6]{3 ^{3} } )( \sqrt[6]{18 ^{2} }) [/tex]

[tex]( \sqrt[6]{ 3^{3} })( \sqrt[6]{18 ^{2} } )= ( \sqrt[6]{ 3^{3} } )( \sqrt[6]{(3 ^{3})(12) } [/tex]

= [tex] \sqrt[6]{(3 ^{6})(12) } [/tex]

ANSWER = [tex] 3\sqrt[6]{12} [/tex]