A sphere of radius 8 inches is inscribed in a right circular cylinder. Find the area of the cylinder? (It's ten points so please give the right answer)

Sagot :

Area of two parallel bases (top and bottom circles of the cylinder:
            = 2 (π r²)
Area of rectangle (lateral surface area): height × circumferences
of the base:
            = h (2 π r)

ADD THE AREAS:
Area (Surface) of the right circular cylinder:
           = 2 π r² + h(2 π r)

Given:
Radius = 8 inches
Height (Diameter) = 2 (8 inches) = 16 inches
π (pi) = 3.14

Solution:
Area = 2π (8 inches)² + 16 inches (2π) (8 inches)
         = 2π (64 inches²) + 16 inches (16 π inches)
         = 128 π inches²  +  256 π inches²
         = 384 inches² (3.14)
         = 1,205.76 inches²

ANSWER:  The area is 1,205.76 inches²