Sagot :
Arithmetic sequence:
[tex]a _{n} = a _{1} + (n-1)(d) [/tex]
Where:
[tex]n [/tex] = number of terms (nth term) ⇒ 25
[tex]a _{n} [/tex] = last term in the sequence ⇒ unknown
[tex]a _{1} [/tex] = first term in the sequence ⇒ 3
d = common difference (difference between any two consecutive terms in the sequence)
d = 4
Solution:
[tex]a _{25} [/tex] = 3 + (25-1) (4)
[tex]a _{25} [/tex] = 3 + (24)(4)
[tex]a _{25} [/tex] = 3 + 96
[tex]a _{25} [/tex] = 99
ANSWER: The 25th term in the sequence is 99.
[tex]a _{n} = a _{1} + (n-1)(d) [/tex]
Where:
[tex]n [/tex] = number of terms (nth term) ⇒ 25
[tex]a _{n} [/tex] = last term in the sequence ⇒ unknown
[tex]a _{1} [/tex] = first term in the sequence ⇒ 3
d = common difference (difference between any two consecutive terms in the sequence)
d = 4
Solution:
[tex]a _{25} [/tex] = 3 + (25-1) (4)
[tex]a _{25} [/tex] = 3 + (24)(4)
[tex]a _{25} [/tex] = 3 + 96
[tex]a _{25} [/tex] = 99
ANSWER: The 25th term in the sequence is 99.