A tricycle travels 2 hours at a speed of 60 km per hour, another 4 hours at a speed of 55 km per hour. what was the average speed of the tricycle for the whole journey?​

Sagot :

Answer:

ANSWERS:

\large\rm 1. \: b +51.b+5

• The sum of a number, b, and five.

• A number, b, added by five.

\large \rm 2. \: 2x - 62.2x−6

• Twice the number, x, subtracted by six.

• Six less than the product of two and a number, x.

\large \rm 3. \: 3x - 5 = 503.3x−5=50

• Thrice the number, x, diminished by five is equal to fifty.

• Five less than the product of three and a number, y, is fifty.

\large \rm 4. \: 2a \times 6=234.2a×6=23

• The product of twice a number, x, and 6 is twenty-three.

• Twice a number, a, multiplied by six is twenty-three.

\large \rm 5. \: 5b + 6 = 1005.5b+6=100

• Five times a number, b, added by six is one hundred.

• Six more than the product of five and a number, b, is one hundred.

\blue {\overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}

Answer:

✒️COMBINATIONS

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

\large\underline{\mathbb{ANSWER}:}

ANSWER:

\qquad \LARGE \:\: \rm 5 \: Groups5Groups

*Please read and understand my solution. Don't just rely on my direct answer*

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

\large\underline{\mathbb{SOLUTION}:}

SOLUTION:

Since the letters are grouped, the order doesn't matter. Solve for the number of combinations does 5 letters picked 4 at a time.

\begin{gathered} \begin{aligned} & \bold{Formula:} \\ & \quad \boxed{\rm _nC_r = \frac{n!}{r!(n-r)!}} \end{aligned} \end{gathered}

Formula:

n

C

r

=

r!(n−r)!

n!

\begin{gathered} \rm _5C_4 = \frac{5!}{4!(5-4)!} \\ \end{gathered}

5

C

4

=

4!(5−4)!

5!

\begin{gathered} \rm _5C_4 = \frac{5!}{4! \,1!} \\ \end{gathered}

5

C

4

=

4!1!

5!

\begin{gathered} \rm _5C_4 = \frac{5 \cdot \cancel{4!}}{\cancel{4!} } \\ \end{gathered}

5

C

4

=

4!

5⋅

4!

\rm _5C_4 = 5

5

C

4

=5

Therefore, there are 5 groups of 4 letters that can be made from the word "house".

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

(ノ^_^)ノ \large\qquad\qquad\qquad\tt 2/27 /20222/27/2022