log3 (27 · 81) and log3 27 log3 81

Sagot :

Answer:

[tex] log_{3}(27 \cdot 81) = 7[/tex]

[tex] log_{3}27 = 3 [/tex]

[tex] log_{3}81 = 4 [/tex]

Step-by-step explanation:

Logarithmic Power rule

[tex] log_{a}b^m= m \cdot log_{a}b [/tex]

---------------------------------------------------------------

Problem 1

[tex] log_{3}(27\cdot 81) = log_{3}(3^3 \cdot 3^4) [/tex]

[tex] log_{3}(27\cdot 81) = log_{3}3^7 [/tex]

[tex] log_{3}(27\cdot 81) = 7\cdot log_{3}3 [/tex]

[tex] log_{3}(27\cdot 81) = 7\cdot 1 [/tex]

[tex] log_{3}(27\cdot 81) = 7 [/tex]

Problem 2

[tex] log_{3}27 = log_{3}(3^3) [/tex]

[tex] log_{3}27 = 3\cdot log_{3}3 [/tex]

[tex] log_{3}27 = 3\cdot 1 [/tex]

[tex] log_{3}27 = 3 [/tex]

Problem 3

[tex] log_{3}81 = log_{3}(3^4) [/tex]

[tex] log_{3}81 = 4\cdot log_{3}3 [/tex]

[tex] log_{3}81 = 4\cdot 1 [/tex]

[tex] log_{3}81 = 4 [/tex]