(k²/⁵) (k⁶/⁷) what is the answer?


Sagot :

When multiplying numbers with the same base, we just add the exponents, and that will be the exponent of the product.

[tex]k^{2/5}*k^{6/7}=k^{2/5+6/7}=k^{44/35}= \sqrt[35]{k^{44}} [/tex]
1) Change the fractional exponents to similar fractions.  LCD of denominators 5 and 7 is 35.

2) Re-write as:
  
[tex](k ^{ \frac{14}{35} } ) (k ^{ \frac{30}{35} } )[/tex]

3) Multiply (add the exponents):
   
 [tex](k ^{ \frac{14}{35} } ) (k ^{ \frac{30}{35} } ) = k ^{ \frac{44}{35} } [/tex]

4) As radical expression, the denominator is the nth root, the numerator is the exponent of the radicand k.

[tex]k ^{ \frac{44}{35} } = \sqrt[35]{k ^{44} } [/tex]