We know this is an arithmetic sequence
So [tex] \tt a_{1} = 75, \: \: d = 25[/tex]
So [tex] \tt a_{n} = a_{1} + (n - 1)d[/tex]
[tex] = \tt75 + (n - 1) \times 25 [/tex]
[tex] \tt = 25n + 50[/tex]
So when [tex] \tt n = 12[/tex]
[tex] \tt a_{12} = 25 \times 12 + 50[/tex]
[tex] \tt\:\:\:\:\:\: = P350[/tex]
So [tex] \tt s_{12} = \frac{12 \times (75 + 350)}{2} [/tex]
[tex] = \tt6 \times (75 + 350)[/tex]
[tex] \tt = 2550[/tex]
[tex] \\ [/tex]
Answer: B