Sagot :
Answer:
3 and 2
Step-by-step explanation:
line segment yun lang
✏️MIDPOINT
===============================
Direction: Find the midpoint of each line segment.
- (1,-3) and (5,-4)
- (1,4) and (0,1)
Solution: To find the midpoint of each segments, we will use the formula.
[tex] \begin{aligned} &\bold{ \color{lightblue}Formula: } \\& \boxed{M = \bigg( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \bigg)} \end{aligned}[/tex]
1. (1,-3) and (5,-4)
- [tex] \begin{aligned} {M = \bigg( \frac{1 + 5}{2}, \frac{ \text - 3 + ( \text - 4)}{2} \bigg)} \end{aligned}[/tex]
- [tex] \begin{aligned} {M = \bigg( \frac{1 + 5}{2}, \frac{ \text - 3 - 4}{2} \bigg)} \end{aligned}[/tex]
- [tex] \begin{aligned} {M = \bigg( \frac{6}{2}, \frac{ \text -7}{2} \bigg)} \end{aligned}[/tex]
- [tex] \begin{aligned} {M = \bigg(3, \text-\frac{7}{2} \bigg)} \end{aligned}[/tex]
-Therefore, the midpoint of a segment is:
- [tex] \large \rm {Midpoint = \boxed{ \green{ \bigg(3, \text-\frac{7}{2} \bigg)} }}[/tex]
[tex] \large \sf [/tex]
2. (1,4) and (0,1)
- [tex] \begin{aligned} {M = \bigg( \frac{1 + 0}{2}, \frac{4 + 1}{2} \bigg)} \end{aligned}[/tex]
- [tex] \begin{aligned} {M = \bigg( \frac{1}{2}, \frac{5}{2} \bigg)} \end{aligned}[/tex]
- Therefore the midpoint of a segment is:
- [tex] \large \rm {Midpoint = \boxed{ \green{ \bigg( \frac{1}{2} , \frac{5}{2} \bigg)} }}[/tex]
===============================
#CarryOnLearning
#LearnWithBrainly