Simplify the following using the laws of exponent:
1. x⁰ + y⁰ + z⁰=
2. ( f⁵/ f²)⁴ =
3. (-4c)³ =
4. 3abc⁰ =
5. ((mn²p³) (m²n)⁴ =

Please i really need right now..


Sagot :

✒️EXPONENTS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{DIRECTIONS}:} [/tex]

» Simplify the following using the laws of exponent:

  • 1. x⁰ + y⁰ + z⁰ =
  • 2. ( f⁵/ f²)⁴ =
  • 3. (-4c)³ =
  • 4. 3abc⁰ =
  • 5. (mn²p³) (m²n)⁴ =

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWERS}:} [/tex]

[tex] \qquad \Large 1) \: \rm{3} [/tex]

[tex] \qquad \Large 2) \: \rm{f^{12}} [/tex]

[tex] \qquad \Large 3) \: \rm{\text-64c^3} [/tex]

[tex] \qquad \Large 4) \: \rm{3ab} [/tex]

[tex] \qquad \Large 5) \: \rm{m^9n^6p^3} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

#1: x⁰ + y⁰ + z

  • = [tex] x^0 + y^0 + z^0 [/tex]

  • = [tex] 1 + 1 + 1 [/tex]

  • = [tex] 3 [/tex]

#2: (f⁵ / f²)⁴

  • = [tex] \bigg(\frac{f^5}{f^2}\bigg)^{\!4} \\ [/tex]

  • = [tex] (f^{5-2})^4 [/tex]

  • = [tex] (f^3)^4 [/tex]

  • = [tex] f^{3(4)} [/tex]

  • = [tex] f^{12} [/tex]

#3: (-4c)³

  • = [tex] (\text-4c)^3 [/tex]

  • = [tex] (\text-4)^3c^3 [/tex]

  • = [tex] \text-64c^3 [/tex]

#4: 3abc⁰

  • = [tex] 3abc^0 [/tex]

  • = [tex] 3ab(1) [/tex]

  • = [tex] 3ab [/tex]

#5: (mn²p³)(m²n)⁴

  • = [tex] (mn^2p^3)(m^2n)^4 [/tex]

  • = [tex] (mn^2p^3)(m^{2(4)}n^4) [/tex]

  • = [tex] (mn^2p^3)(m^8n^4) [/tex]

  • = [tex] m^{1+8}n^{2+4}p^3 [/tex]

  • = [tex] m^9n^6p^3 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ