Sagot :
✒️EXPONENTS
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{DIRECTIONS}:} [/tex]
» Simplify the following using the laws of exponent:
- 1. x⁰ + y⁰ + z⁰ =
- 2. ( f⁵/ f²)⁴ =
- 3. (-4c)³ =
- 4. 3abc⁰ =
- 5. (mn²p³) (m²n)⁴ =
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWERS}:} [/tex]
[tex] \qquad \Large 1) \: \rm{3} [/tex]
[tex] \qquad \Large 2) \: \rm{f^{12}} [/tex]
[tex] \qquad \Large 3) \: \rm{\text-64c^3} [/tex]
[tex] \qquad \Large 4) \: \rm{3ab} [/tex]
[tex] \qquad \Large 5) \: \rm{m^9n^6p^3} [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]
#1: x⁰ + y⁰ + z⁰
- = [tex] x^0 + y^0 + z^0 [/tex]
- = [tex] 1 + 1 + 1 [/tex]
- = [tex] 3 [/tex]
#2: (f⁵ / f²)⁴
- = [tex] \bigg(\frac{f^5}{f^2}\bigg)^{\!4} \\ [/tex]
- = [tex] (f^{5-2})^4 [/tex]
- = [tex] (f^3)^4 [/tex]
- = [tex] f^{3(4)} [/tex]
- = [tex] f^{12} [/tex]
#3: (-4c)³
- = [tex] (\text-4c)^3 [/tex]
- = [tex] (\text-4)^3c^3 [/tex]
- = [tex] \text-64c^3 [/tex]
#4: 3abc⁰
- = [tex] 3abc^0 [/tex]
- = [tex] 3ab(1) [/tex]
- = [tex] 3ab [/tex]
#5: (mn²p³)(m²n)⁴
- = [tex] (mn^2p^3)(m^2n)^4 [/tex]
- = [tex] (mn^2p^3)(m^{2(4)}n^4) [/tex]
- = [tex] (mn^2p^3)(m^8n^4) [/tex]
- = [tex] m^{1+8}n^{2+4}p^3 [/tex]
- = [tex] m^9n^6p^3 [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ