Sagot :
[tex] \frac{ x^{2} + 3x}{ x_{2} + 6x + 9} [/tex]
·Firstly, factor the terms
=[tex] \frac{x(x + 3)}{(x+3)(x+3)} [/tex]
·And then cancel the same terms
The answer is [tex] \frac{x}{x+3} [/tex]
--
:)
·Firstly, factor the terms
=[tex] \frac{x(x + 3)}{(x+3)(x+3)} [/tex]
·And then cancel the same terms
The answer is [tex] \frac{x}{x+3} [/tex]
--
:)
( x² + 3x ) / ( x^2 + 6x + 9 )
= x( x + 3 ) / ( x + 3 )( x + 3 )
= x / ( x + 3 ) ( cancel x+3 )
= x( x + 3 ) / ( x + 3 )( x + 3 )
= x / ( x + 3 ) ( cancel x+3 )