what is the quadratic equation whose roots are 2+√3 and 2-√3​

Sagot :

Answer:

✏️SURFACE AREA

==============================

WRITTEN WORKS

» Find the surface area of each solid figure.

==============================

#1: A cylinder whose radius is 7 m and whose height is 12 m.

\begin{gathered} \begin{aligned} & \bold{Formula:} \\ & \boxed{SA = 2\pi r^2 + 2\pi rh} \end{aligned} \end{gathered}

Formula:

SA=2πr

2

+2πrh

SA = 2(3.14)(7\,m)^2 + 2(3.14)(7\,m)(12\,m)SA=2(3.14)(7m)

2

+2(3.14)(7m)(12m)

SA = 2(3.14)(49\,m^2) + 2(3.14)(7\,m)(12\,m)SA=2(3.14)(49m

2

)+2(3.14)(7m)(12m)

SA = 307.72\,m^2 + 527.52\,m^2SA=307.72m

2

+527.52m

2

SA = 835.24\,m^2SA=835.24m

2

\therefore∴ The surface area of the given cylinder is about...

\large \underline{\boxed{\tt \purple{835.24\,m^2}}}

835.24m

2

\: \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad

#2: A cube whose edge is 5 cm.

\begin{gathered} \begin{aligned} & \bold{Formula:} \\ & \boxed{SA = 6s^2} \end{aligned} \end{gathered}

Formula:

SA=6s

2

SA = 6(5\,cm)^2SA=6(5cm)

2

SA = 6(25\,cm^2)SA=6(25cm

2

)

SA = 150\,cm^2SA=150cm

2

\therefore∴ The surface area of the given cube is...

\large \underline{\boxed{\tt \purple{150\,cm^2}}}

150cm

2

==============================

#CarryOnLearning

(ノ^_^)ノEZ