- For numbers 9 15, Supply the missing part of the coordinate proof of the statement "The segments joining the midpoints of consecutive sides of an isosceles trapezoid form a rhombus. Choose your answer from the box below. A. G. B. WZ ſ(-a)²+(-2) 29?+(3 (-b-a C. H. D-a - 0) +(2-0) V(o--ba)* +(0-3)? D. VD2+2ab+a2+c2 E. 2 F. rhombus Given: Isosceles trapezoid HEAT with HE =TA, W, X, Y AND Z are the midpoints of the sides. Prove: Quadrilateral WXYZ is a rhombus Proof. Show that WX = XY = YZ = WZ (9) WX = (b-a _ 0)² + ( -c) E (-b,c) x 0.c) WX = (10) A (5.c) -b-a WX = . (11) w3) (2) 2 XY = ſro - bta)² + (6-8) XY = 6-2)*+ H(-a,0) 210,0) T(a,0) XY = (12) ZW= (14) yz = C70 - 0) +(-0) ) ZW = Veza)+(-3)* YZ = (13) ZW = Vb2+2ab+a2+2 2 Vb2+2ab+a?+c2 YZ = 2 Therefore, WX = XY = YZ = ZW, and WXYZ is_thombus (15)