in how many different ways can be letter of the word RUMOUR be arranged if the consonants always come together​

Sagot :

[tex] \large\underline \mathcal{{QUESTION:}}[/tex]

In how many different ways can be letter of the word RUMOUR be arranged if the consonants always come together?

[tex]\\[/tex]

[tex] \large\underline \mathcal{{SOLUTION:}}[/tex]

Consonants = RMR = 1 entity

Other letters = UOU = 3 entities

[tex]\\[/tex]

Now , There are 4 entities. In here we will solve for the distinguishable permutation. Because UOU , the letter U is repeated twice. And thesame goes for the Consonants:

  • Total entities = 3+1 = 4
  • Repeated Other letters = 2 (U)
  • Total Consonants = RMR = 3
  • Repeated Consonant = 2 (R)

[tex]\\[/tex]

[tex]\sf{P=\frac{(Total\:entities)!}{(Repeated(U))!}\times\frac{(Total\:Consonants)!}{(Repeated(R))!}}[/tex]

[tex]\sf{P=\frac{4!}{2!}\times\frac{3!}{2!}}[/tex]

[tex]\sf{P=\frac{4\times3\times2\times1}{2\times1}\times\frac{3\times2\times1}{2\times1}}[/tex]

[tex]\sf{P=\frac{4\times3\times\cancel{2\times1}}{\cancel{2\times1}}\times\frac{3\times\cancel{2\times1}}{\cancel{2\times1}}}[/tex]

[tex]\sf{P=4\times3\times3}[/tex]

[tex]\sf{P=36}[/tex]

[tex]\\[/tex]

[tex] \large\underline \mathcal{{ANSWER:}}[/tex]

  • There are 36 ways