Sagot :
Formula:
[tex] a_{n} = a_{1} + (n-1) d[/tex]
Asked:
Number of terms or n
Solution:
59 = 3 + (n - 1) 4
59 = 3 + 4n - 4
59 = 4n - 1
59 + 1 = 4n
60 = 4n
60 / 4 = 4n /4
15 = n
Answer:
There are 15 terms in the given arithmetic sequence.
[tex] a_{n} = a_{1} + (n-1) d[/tex]
Asked:
Number of terms or n
Solution:
59 = 3 + (n - 1) 4
59 = 3 + 4n - 4
59 = 4n - 1
59 + 1 = 4n
60 = 4n
60 / 4 = 4n /4
15 = n
Answer:
There are 15 terms in the given arithmetic sequence.
Formula for the number of terms:
[tex]n= \frac{a_n-a_1}{d} +1= \frac{59-3}{4} +1=15[/tex]
[tex]n= \frac{a_n-a_1}{d} +1= \frac{59-3}{4} +1=15[/tex]