How many terms are there in an arithmetic seq. With a common diff. Of 4 .. the first term is 3 and the last term is 59. Thankyou

Sagot :

Formula:
             [tex] a_{n} = a_{1} + (n-1) d[/tex]
Asked:
               Number of terms or n
Solution:
 
        59 = 3 + (n - 1) 4
        59 = 3 + 4n - 4
        59 = 4n - 1
        59 + 1 = 4n
        60 = 4n
        60 / 4 = 4n /4
        15 = n
Answer:
                   There are 15 terms in the given arithmetic sequence.
Formula for the number of terms:
[tex]n= \frac{a_n-a_1}{d} +1= \frac{59-3}{4} +1=15[/tex]