Sagot :
[tex]\dag\:\underline{\sf AnsWer :} \\ [/tex]
Solution (I) :-
[tex]\boxed{\begin{array}{l | n | r}\sf x - 3&\sf 3x^3 - 11x^2 + 10x - 12&\sf 3x^2 - 2x + 4\\ &\sf 3x^3 - 9x^2\\ & ( - )\quad( + )\\&\rule{60}{0.8}\\&\sf\quad - \:2x^2+10x\\ &\sf\quad-\:2x^2 + 6x\\ & \quad ( + )\: \: \:( - )\\&\quad\rule{55}{0.8}\\&\qquad\quad\sf 4x - 12\\ &\sf\qquad\quad\sf 4x - 12\\&\quad\quad(-)\:\:(-)\\&\quad\quad\rule{50}{0.8}\\ &\sf\qquad\qquad0\end{array}}[/tex]
Option (b) 3x² - 2x + 4 is the right answer.
━━━━━━━━━━━━━━━━━━━━━━━━
Solution (II)
[tex]\longrightarrow\:\:\sf {a}^{2} + 10a + 25 \\ \\ \longrightarrow\:\:\sf {a}^{2} + 5a + 5 a + 25 \\ \\ \longrightarrow\:\:\sf a(a + 5) + 5 (a + 5) \\ \\ \longrightarrow \underline{ \boxed{\:\:\sf (a + 5)^2}}[/tex]
Option b) (a + 5)² is the right answer.
━━━━━━━━━━━━━━━━━━━━━━━━
Solution (III) :-
[tex]\dashrightarrow\:\:\sf (2ab)2 \\ \\ \dashrightarrow\:\: \underline{ \boxed{\sf4ab}} \\ \\ [/tex]
Option d) 4ab is the correct option