Sagot :
Distance Formula:
[tex] \sqrt{(x - x_{2})^{2} + ( y - y_{2})^{2} } [/tex]
Substitute the variables:
x = -4
[tex] x_{2} [/tex] = 1
y = 2
[tex] y_{2} [/tex] = -11
[tex] \sqrt{( -4 - 1 )^{2} + ( 2 - -11)^{2} } [/tex]
[tex] \sqrt{( -5)^{2} + ( 13)^{2} } [/tex]
[tex]\sqrt{( 25) + ( 169) } [/tex]
[tex] \sqrt{194} [/tex]
That is the answer if I am not mistaken.
[tex] \sqrt{(x - x_{2})^{2} + ( y - y_{2})^{2} } [/tex]
Substitute the variables:
x = -4
[tex] x_{2} [/tex] = 1
y = 2
[tex] y_{2} [/tex] = -11
[tex] \sqrt{( -4 - 1 )^{2} + ( 2 - -11)^{2} } [/tex]
[tex] \sqrt{( -5)^{2} + ( 13)^{2} } [/tex]
[tex]\sqrt{( 25) + ( 169) } [/tex]
[tex] \sqrt{194} [/tex]
That is the answer if I am not mistaken.
The distance formula is
d=[tex] \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} [/tex]
Lets set (1,-11) as x2 and y2
d=[tex] \sqrt{(1+4)^2+(-11-2)^2} [/tex]
d=[tex] \sqrt{5^2+(-13)^2} [/tex]
d=[tex] \sqrt{25+169} [/tex]
d=[tex] \sqrt{194}[/tex]
d=13.93 units
Hope this helps =)
d=[tex] \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} [/tex]
Lets set (1,-11) as x2 and y2
d=[tex] \sqrt{(1+4)^2+(-11-2)^2} [/tex]
d=[tex] \sqrt{5^2+(-13)^2} [/tex]
d=[tex] \sqrt{25+169} [/tex]
d=[tex] \sqrt{194}[/tex]
d=13.93 units
Hope this helps =)