What is the answer of this problem
2x^3-5÷x+2?


Sagot :

[tex]\bold{Given\ Equation:} \\ \\ 2x^3-5\div x+2\implies \bold{\frac{2x^3-5}{x+2}} \\ \\ \bold{Solution:} \\ \\ \frac{2x^3-5}{x+2} \ \ \ \ \ \ |\ ^{follow\ the\ rules\ of\ dividing\ fractions} \\ \\ \bold{So\ the\ final\ answer\ is...} \\ \\ \boxed{\bold{2x^2-3}} \\ \\ Hope\ it\ Helps :) \\ Domini [/tex]

Given equation:
                                [tex] \frac{2x^{3}-5}{x+2} [/tex]


Solution:

                                        2x²   - 4x + 8         

                   x    +   2     |   2x³                  -  5

                                         2x³ + 4x²              

                                                 -4x²         - 5

                                                 -4x²  - 8x      

                                                           8x - 5

                                                                 16

                                                                -21

Answer: 

2x² - 4x + 8 with a remainder of -21 or 2x² - 4x + 8 + [tex] \frac{-21}{x+2} [/tex]


Check:

                ( x + 2 ) ( 2x² - 4x + 8 ) =   2x³ + 16

There is a remainder which is  -21.

            2x³ + 16 + -21 =  2x³ - 5, CORRECT


Final answer:

                      2x² - 4x + 8 + [tex] \frac{-21}{x+2} [/tex]