Sagot :
[tex]\bold{Given\ Equation:} \\ \\ 2x^3-5\div x+2\implies \bold{\frac{2x^3-5}{x+2}} \\ \\ \bold{Solution:} \\ \\ \frac{2x^3-5}{x+2} \ \ \ \ \ \ |\ ^{follow\ the\ rules\ of\ dividing\ fractions} \\ \\ \bold{So\ the\ final\ answer\ is...} \\ \\ \boxed{\bold{2x^2-3}} \\ \\ Hope\ it\ Helps :) \\ Domini [/tex]
Given equation:
[tex] \frac{2x^{3}-5}{x+2} [/tex]
Solution:
2x² - 4x + 8
x + 2 | 2x³ - 5
2x³ + 4x²
-4x² - 5
-4x² - 8x
8x - 5
16
-21
Answer:
2x² - 4x + 8 with a remainder of -21 or 2x² - 4x + 8 + [tex] \frac{-21}{x+2} [/tex]
Check:
( x + 2 ) ( 2x² - 4x + 8 ) = 2x³ + 16
There is a remainder which is -21.
2x³ + 16 + -21 = 2x³ - 5, CORRECT
Final answer:
2x² - 4x + 8 + [tex] \frac{-21}{x+2} [/tex]