Sagot :
[tex]\frac{\sqrt{72b^4a^3}}{\sqrt{6a}}[/tex]
Now since the rules to solve this is to multiply the denominator by itself. Only do this when it has square root.
[tex]\frac{\sqrt{432b^4a^4}}{6a}[/tex]
Solve the square root first
[tex]\frac{12b^2a^2\sqrt{3}}{6a}[/tex]
Divide
=2ab²√3
Now since the rules to solve this is to multiply the denominator by itself. Only do this when it has square root.
[tex]\frac{\sqrt{432b^4a^4}}{6a}[/tex]
Solve the square root first
[tex]\frac{12b^2a^2\sqrt{3}}{6a}[/tex]
Divide
=2ab²√3
[tex]Hi!\ Jomkish...\ Here's\ the\ solution\ of\ your\ problem... \\ \\ First,\ let's\ fix\ first\ the\ problem\ in\ order\ we\ could \\ understand\ the\ given\ equation... \\ \\ Given\ equation\ is: \\ \\ \frac{ \sqrt{72b^4a^3}}{ \sqrt{6a}} \\ \\ \\ Solution: \\ \\ \frac{ \sqrt{72b^4a^3}}{ \sqrt{6a}}\ \ \cdot \frac{ \sqrt{6a} }{ \sqrt{6a}}[/tex]
[tex]^{We\ have\ to\ multiply\ the\ given\ equation\ by\ the\ given\ denomiantor} \\ ^{to\ eliminate\ the\ square\ root\ of\ the\ given\ denominator.} \\ \\ So\ you'll\ have\ this: \\ \\ \frac{ \sqrt{432b^4a^4} }{6a} \\ \\ ^{via\ use\ of\ the\ scientific\ calculator,\ we\ could\ solve\ the\ square\ root\ of\ the} \\ ^{numerator...\ So\ here's\ the\ result...} \\ \\ \frac{12b^2a^2 \sqrt{3}}{6a} \\ \\ ^{\ Divide\ it\ easily\ and\ you'll\ get...} \\ \\ \boxed{2ab^2 \sqrt{3}} \\ \\ \\ Hope\ it\ Helps :) [/tex]
[tex]Domini[/tex]
[tex]^{We\ have\ to\ multiply\ the\ given\ equation\ by\ the\ given\ denomiantor} \\ ^{to\ eliminate\ the\ square\ root\ of\ the\ given\ denominator.} \\ \\ So\ you'll\ have\ this: \\ \\ \frac{ \sqrt{432b^4a^4} }{6a} \\ \\ ^{via\ use\ of\ the\ scientific\ calculator,\ we\ could\ solve\ the\ square\ root\ of\ the} \\ ^{numerator...\ So\ here's\ the\ result...} \\ \\ \frac{12b^2a^2 \sqrt{3}}{6a} \\ \\ ^{\ Divide\ it\ easily\ and\ you'll\ get...} \\ \\ \boxed{2ab^2 \sqrt{3}} \\ \\ \\ Hope\ it\ Helps :) [/tex]
[tex]Domini[/tex]