how will you simplify rational algebraic expressions?

Sagot :

To simplify a fraction or to reduce to lowest terms, factor both numerator and denominator and then divide the numerator and denominator by their common factors.

ex: 6[tex] x^{2} [/tex]y         6xxy            
    12[tex] xy^{2} [/tex]  =    6·2xyy =  [tex] \frac{x}{2y} [/tex]
 

hope this helps..
For additional information;

You can simplify rational algebraic expressions in a brief way, through its factors....

[tex]Cancelling\ factors\ is\ the\ best\ way\ on\ doing\ this; \\ \\ \frac{2x}{x^2}= \frac{2}{x}\cdot \frac{\not{x}}{\not{x}}= \boxed{\frac{2}{x}} \\ \\ \frac{(x+3)(x+4)}{(x+3)(x+2)} =\boxed{ \frac{x+4}{x+2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ |\ Cancel\ the\ factor\ x+3 \\ \\ \\ Remember; \\ You\ can't\ cancel\ terms\ yet\ you\ can\ cancel\ factors... \\ \\ Hope\ it\ Helps :) \\ Domini [/tex]