Sagot :
1.)
[tex] (2+y)^{3} = 2^{3} + 3(2^{2})(y) + 3(2)(y^{2})+y^{3} = 8 + 12y + 6y^{2} + y^{3}[/tex]
2.) Cube of a binomial
3. logarithmic equation
xln9=ln15
x=ln15/ln9
[tex] (2+y)^{3} = 2^{3} + 3(2^{2})(y) + 3(2)(y^{2})+y^{3} = 8 + 12y + 6y^{2} + y^{3}[/tex]
2.) Cube of a binomial
3. logarithmic equation
xln9=ln15
x=ln15/ln9
[tex]1.)\ Given; \\ (2+y)^{3} \\ \\ Solution; \\ 2^{3}+3(2^{2})(y)+3(2)(y^{2})+y^{3} \\ \\ 8+3y(4)+6(y^{2})+y^{3} \\ \\ \boxed{8+12y+6y^{2}+y^{3}} \\ \\ \\ 2.)\ Given; (2+y)^{3}\to\boxed{cubed\ of\ a\ binomial} \\ \\ \\ 3.)I\ would\ rather\ used\ logarithmic\ equation\ because\ I\ find\ it\ simple[/tex]
[tex]Logarithmic\ Equation \\ Solution; \\ \\ x\ ln9=ln15 \\ \\ \frac{x\ \not{ln}\not{9}}{\not{ln}\not{9}}= \frac{ln15}{ln9}\ \ \ \ \ \ \ \ \ \ |\ ln9\ is\ cancelled. \\ \\ \boxed{\boxed{x= \frac{ln15}{ln9}}} \\ \\ \\ Hope\ it\ Helps :) \\ Domini [/tex]
[tex]Logarithmic\ Equation \\ Solution; \\ \\ x\ ln9=ln15 \\ \\ \frac{x\ \not{ln}\not{9}}{\not{ln}\not{9}}= \frac{ln15}{ln9}\ \ \ \ \ \ \ \ \ \ |\ ln9\ is\ cancelled. \\ \\ \boxed{\boxed{x= \frac{ln15}{ln9}}} \\ \\ \\ Hope\ it\ Helps :) \\ Domini [/tex]