Establish the identity

tan²θ-sin²θ=tan²θsin²θ


Sagot :

[tex]tan^{2}\theta - sin^{2}\theta = tan^{2}\theta sin^{2}\theta} \\ \frac{sin^{2}\theta}{cos^{2}\theta} - sin^{2}\theta =tan^{2}\theta sin^{2}\theta\\ \frac{sin^{2}\theta - sin^{2}\theta cos^{2}\theta}{cos^{2}\theta} =tan^{2}\theta sin^{2}\theta} \\ \frac{sin^{2}\theta(1 - cos^{2}\theta)}{cos^{2}\theta} =tan^{2}\theta sin^{2}\theta \\ \frac{sin^{2}\theta(sin^{2}\theta)}{cos^{2}\theta} =tan^{2}\theta sin^{2}\theta \\ tan^{2}\theta sin^{2}\theta = tan^{2}\theta sin^{2}\theta \\[/tex]