proving identites

Csc θ - Cot θ = Sin θ/1+ Cos θ


Sagot :

[tex]csc \theta - cot \theta = \frac{sin \theta}{1 + cos \theta} \\ \frac{1}{sin \theta} - \frac{cos \theta}{sin \theta} = \frac{sin \theta}{1 + cos \theta} \\ \frac{1 - cos \theta}{sin \theta} = \frac{sin \theta}{1 + cos \theta} \\ \frac{1 - cos \theta}{sin \theta} * \frac{1 + cos \theta}{1 + cos \theta} = \frac{sin \theta}{1 + cos \theta} \\ \frac{1 - cos^{2} \theta}{sin \theta(1 + cos \theta)} = \frac{sin \theta}{1 + cos \theta} \\ [/tex]

[tex]\frac{sin^{2}\theta}{sin \theta(1 + cos \theta)} = \frac{sin \theta}{1 + cos \theta} \\ \frac{sin\theta}{1 + cos \theta} = \frac{sin \theta}{1 + cos \theta} \\[/tex]