Kindly, solve this equations with simple solutions, so that I will understand. Thank you!
[tex]2 x^{2}-9x+9/ x^{2} -6x+9

x^{3}+y^{3}+x+y/ x^{2} -xy+y^{2}+1[/tex]


Sagot :

[tex] \frac{(2x-3)(x-3)}{(x-3)(x-3)} = \frac{2x-3}{x-3} [/tex]

[tex] \frac{x^{3}+y^{3}+x+y}{x^{2}-xy+y^{2}+1} = \frac{(x^{3}+y^{3})+(x+y)}{x^{2}-xy+y^{2}+1} = \frac{(x+y)(x^2-xy+y^{2})+(x+y)}{x^{2}-xy+y^{2}+1}[/tex]
[tex]= \frac{(x+y)[(x^2-xy+y^{2})+1]}{x^{2}-xy+y^{2}+1} = x+y[/tex]
[tex]1.)\frac{2x^{2}-9x+9}{ x^{2}-6x+9} \ \ \ \ \ \ \ Solution;\ \ \ \frac{2x^{2}-9x+9}{ x^{2}-6x+9}\to \frac{(2x-3(x-3)}{(x-3)(x-3)}\to\boxed{ \frac{2x-3}{x-3}} \\ \\ \\ \\ 2.) \frac{x^{3}+y^{3}+x+y}{x^{2}-xy+y^{2}+1} \ \ \ \ Solution; \ \ \ \frac{(x^{3}+y^{3})+(x+y)}{x^{2}-xy+y^{2}+1}\to \frac{(x+y)(x^{2}-xy+y^{2})+(x+y)}{x^{2}-xy+y^{2}+1} \\ \\ .\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{(x+y)[(x^{2}-xy+y^{2}+1)]}{{x^{2}-xy+y^{2}+1}}\to\boxed{x+y} [/tex]

[tex]Hope\ it\ Helps:) \\ Domini[/tex]